Difference between revisions of "Central heating design"

From DIYWiki
Jump to navigation Jump to search
(add link to whole-house boiler sizing method worksheet)
(24 intermediate revisions by 8 users not shown)
Line 1: Line 1:
This article is about [[Central Heating]] systems using hot water as a heat-carrying medium.  
+
This article is about [[Central heating]] systems using hot water as a heat-carrying medium.  
 
(Warm-air systems are sometimes found in the UK but their design and installation is not covered here. There is a discussion on updating existing warm-air systems [http://groups.google.co.uk/group/uk.d-i-y/browse_frm/thread/cd973db3a3604624? here])
 
(Warm-air systems are sometimes found in the UK but their design and installation is not covered here. There is a discussion on updating existing warm-air systems [http://groups.google.co.uk/group/uk.d-i-y/browse_frm/thread/cd973db3a3604624? here])
  
Line 7: Line 7:
  
 
There are separate articles about:
 
There are separate articles about:
* [[Central Heating Operation]] for help maintaining a working CH system
+
* [[Central heating operation]] for help maintaining a working CH system
 
* [[Central Heating Repair]] for diagnosing and fixing a faulty system.
 
* [[Central Heating Repair]] for diagnosing and fixing a faulty system.
  
'''''This article is a skeleton: the main points to be covered are listed but some or all still need to be expanded'''''
+
'''''Parts of this article are in skeleton form with main points listed but needing to be expanded'''''
  
 
== Heat requirements ==
 
== Heat requirements ==
* Discuss + links to whole-house heatloss calculators
+
In order to get a heating system which works effectively and economically it is important to calculate how much heating power will be required, into the building as a whole (in order to calculate the required size for the boiler or other heat source) and into each room (to calculate sizes of radiators or other heat emitters).
** [http://www.est.org.uk/uploads/documents/housingbuildings/ce54.pdf Boiler sizing method - worksheet] (PDF)
 
** [http://www.idhe.org.uk/calculator.html IDHE (Institute of Domestic Heating & Environmental Engineers) calculator]
 
** [http://www.est.org.uk/housingbuildings/calculators/boilersizing/ Energy Saving Trust calculator]
 
  
 +
=== Whole house/boiler sizing ===
 +
For boiler sizing there is a relatively simple yet sufficiently accurate calculation known as the whole-house boiler sizing method. The method is described in the
 +
* [http://www.est.org.uk/uploads/documents/housingbuildings/ce54.pdf Energy Saving Trust worksheet] (PDF)
 +
An online calculator implementing the method is available at:
 +
* [http://www.idhee.org.uk/calculator.html IDHE (Institute of Domestic Heating & Environmental Engineers) calculator] DEAD LINK 4/2019
 +
A spreadsheet implementing the calculator is available at:
 +
* [http://yaph.co.uk/heating/boiler_sizing.xls YAPH]
 +
The spreadsheet allows easy what-if calculations showing the effect of, say, cavity wall insulation on the house heating requirements.
  
* Discuss + links to energy conservation articles
+
=== Heatloss/radiator sizing ===
 +
For calculating the heat requirements of rooms an elemental approach is taken.
 +
# The area of walls, windows, doors, floor and ceilings is calculated
 +
# U-values for the materials of these elements are found from tables
 +
# Temperature differences across the elements are multiplied by the above figures to calculate total ''fabric'' loss
 +
# The volume of the room is calculated
 +
# The number of air-changes per hour expected for the room is found from a table
 +
# The above two figures are multiplied together with a factor for the heat capacity of air to calculate total ''ventilation'' loss
 +
# The fabric and ventilation losses are added to calculate the total heat requirement of the room, and therefore the size of radiator or other heat-emitter(s) required.
 +
 
 +
A (Microsoft Windows) computer program implementing this method is the
 +
* [http://www.quinn-radiators.co.uk/downloads_heatloss.php Barlo heatloss calculator]
 +
 
 +
''* Discuss + links to energy conservation articles''
  
 
== Heat Sources ==
 
== Heat Sources ==
Line 44: Line 62:
  
 
''For further discussion of types of boiler, combi/conventional choice etc see:
 
''For further discussion of types of boiler, combi/conventional choice etc see:
*[[Boilers]]
+
*[[Boiler]]s
*[http://www.makewrite.demon.co.uk/BoilerChoice.html Ed's Boiler Choice FAQ]''
+
*[[Boiler choice FAQ]]''
  
 
Electric boilers perform the same function as non-combi boilers using electricity. They can be expected to have very high running costs compared to natural gas, oil or LPG boilers.
 
Electric boilers perform the same function as non-combi boilers using electricity. They can be expected to have very high running costs compared to natural gas, oil or LPG boilers.
Line 73: Line 91:
  
 
Both systems, as well as [[Drain Heat Exchanger|waste water heat recovery]], can be used with thermal stores, combining their output with other systems including conventional boilers and/or electric backup heaters to provide space heating, via UFH and radiators, and DHW.
 
Both systems, as well as [[Drain Heat Exchanger|waste water heat recovery]], can be used with thermal stores, combining their output with other systems including conventional boilers and/or electric backup heaters to provide space heating, via UFH and radiators, and DHW.
 +
 +
''' Air-source Heat Pumps ''' - similar benefits as ground-source heat pumps and easier to install;  however in locating these units, the potential noise of the fan must be taken into account as some people are very sensitive to such noise, especially at night.
  
 
== Heat Emitters ==
 
== Heat Emitters ==
Line 78: Line 98:
  
 
=== Radiators ===
 
=== Radiators ===
''"Radiators" actually emit heat mostly via convection rather than radiation: they heat the air which heats the fabric of the room and its occupants''
+
''"Radiators" actually emit heat mostly via convection rather than radiation: they heat the air which heats the fabric of the room and its occupants.''
  
==== Types ====
+
They come in a number of types -- standard panel radiators, Low Surface Temperature (LST), "designer" radiators and towel warmers -- and shapes, sizes and colours/finishes. Radiators must be chosen and located so as to provide sufficient output to heat the spaces they are installed into.
Radiators comes in a number of types, shapes and sizes. Most are finished with a heat resistant white paint.
 
  
'''Standard radiators''' come in a range of heights typically between 300 and 750mm with the greatest range of lengths and configurations in heights around 450 to 600mm high. Lengths range from 200mm to 3m or more with the greatest range around 450mm to 2m long. Radiators generally have one or two panels, although 3-panel types are sometimes found. Modern single-panel radiators have a corrugated panel forming a series of fins (called "convectors") attached to the back (wall-facing) side of the panel, which increases the convection output of the radiator. Two-panel radiators may have one set of convectors attached to the back of the front panel or two sets of convectors, with the second attached to the front of the back panel (thus in both types the convectors are 'sandwiched' between the panels).
+
There is more detail in the article:
 +
* [[Central Heating Radiators]]
  
'''Low Surface Temperature''' (LST) radiators are designed so that accessible surfaces have relatively low temperatures when operating with flows at normal CH system temperatures. These are used where there could be a hazard arising from the temperature of a normal radiator, especially in areas used by the very young, very old or others with reduced mobility or ability to detect and react to dangerously high temperatures.
+
=== Fan-assisted heaters ===
 +
''These types use forced convection, compared to natural convection employed by radiators.''
  
'''Designer radiators''' can be more visually attractive, but are very much more expensive than standard types. Many designer radiators give out much less heat than similarly-sized regular types.
+
Sometimes known as kickspace heaters, these have a fan to distribute air warmed by a water-to-air heat exchanger (typically tubes with fins attached) which transfer heat from the central heating primary water.
  
'''Column radiators''' ("school" style) are available (at a price). They may be modern reproductions, or genuine old units which may be reclaimed (more-or-less as-found) or reconditioned (where the radiator is split into its constituent sections, cleaned inside and out and re-finished).
 
Being made of cast iron they are very heavy and for this reason, and due to the manufacturing process, they are often supplied in sections with longer units made by joining shorter ones. They are floor standing with a stay to anchor them to a wall. Large old-style valves (including [[TRV|thermostatic]] types) in various antique/retro styles are available to match. These radiators are much larger than equivalent modern types and add significantly to the volume of primary water which may require more water treatment chemicals, bigger expansion vessels on sealed systems, and make for longer warm-up times.
 
 
'''Towel-warmers''' are radiators specifically designed for hanging towels over for warning and drying in bath and shower rooms. Chrome plated or white painted ladder types are widely available at relatively modest prices. However their heat outputs (even when not covered with towels) are much smaller than similarly-sized conventional radiators and are not usually sufficient for anything but relatively small and well-insulated bathrooms: in other cases they need to be supplemented by a normal radiator. Some designs of towel warmer comprise a normal radiator with towel rails above and sometimes  to the sides of the radiator. These have better heat outputs but again this will be reduced when covered by towels. They also tend to be more expensive than ladder-type towel radiators.
 
 
==== Output specifications ====
 
The manufacturers publish the nominal heat output for each size and type of their radiators. Obviously the hotter a radiator is the more heat it gives out. Traditionally wet CH was designed (or, more likely, estimaŧed for domestic installations) on the basis that the water temperature would be up to about 80°C.
 
With modern condensing boilers the standard is that the temperature will only be up to about 70°C.
 
The differing specifications are known as Delta-60 and and Delta-50, referring to the data being
 
based on a temperature difference of either 60°C or 50°C above ambient. If you are unsure it's probably safe to assume the specification is Delta-60 as manufacturers are not keen to boast how little heat their products give off.
 
 
Putting a radiator in a cabinet (usually made of MDF) may hide its "ugliness" but will typically reduce its heat output by about 50%.
 
 
With modern systems using TRVs and condensing boilers there are no technical drawbacks to installing over-sized radiators, although they will incur extra cost, weight and size. It is usually wise to design a little on the high side.
 
 
==== Locations ====
 
* Where in a room should a radiator be placed? In some rooms such as a bathroom the position of a towel warmer is decided by the layout of the room.  In most other rooms there will be more choice. The decision mostly hinges on whether to place the radiator under a window or not.
 
The arguments for putting it under a window are:
 
* it's not in competition with larger items of furniture as the latter won't be placed so as to block the window.
 
* it will convect warm air up against the descending air cooled by the window so stopping convection draughts.
 
* The outside wall may well be a stronger block wall better for hanging a radiator and than an internal stud wall.
 
The arguments against are:
 
* Where there are excessively long curtains there is a temptation to draw them in front of the radiator, blocking heat to the room.
 
* The wall behind and the window above will be warmer than the rest of the room and will marginally increase heat losses to the outside.
 
* Installation costs will usually be a little higher than with radiators on an inside wall due to longer supply pipe runs.
 
 
Even when a radiator is not fitted directly under a window it should be located close by and preferably on an outside wall. If the radiator is located at the opposite end of the room from windows and outside walls it is likely to result in the room being uncomfortably warm near the radiator and/or cold near the window & outside wall(s). This will be particularly so with large areas of single-glazed windows and solid or uninsulated cavity walls (although for energy-efficiency, and economy in the long-term, it is also advisable to improve insulation).
 
 
Fitting reflective insulating sheet behind radiators fitted on outside walls can help reduce heat losses directly through the wall.
 
 
=== Fan-assisted e.g. kickspace ===
 
''forced convection''
 
 
* particularly suitable for small rooms with limited wall space for rads (e.g. kitchen) or too-high heat-loss/floor-area ratio for UFH (e.g. bathroom)
 
* particularly suitable for small rooms with limited wall space for rads (e.g. kitchen) or too-high heat-loss/floor-area ratio for UFH (e.g. bathroom)
 
* fast warm-up
 
* fast warm-up
Line 128: Line 117:
  
 
=== Underfloor ===
 
=== Underfloor ===
''radiant: heat occupants and fabric directly''
+
 
* require less total heat output (e.g. 20%?) than radiators for a given comfort level due to better air temperature distribution
+
''This gives radiant heat which warms occupants and fabric directly rather than warming the air.''
* more comfortable: warmer feet, cooler head; less stuffy
+
 
* better for heating large spaces e.g. halls
+
* Requires less total heat output (figures of around 20% are quoted) for a given comfort level compared to radiator-based systems.
* limited heat output due to limitation on max confortable floor temperatures: may be insufficient for small rooms with large heat requirements & large losses e.g. bathrooms
+
* Tends to give warmer feet and cooler heads giving a more comfortable, less stuffy feeling.
* heat output dependant on floor covering
+
* Good for heating large spaces where it would be hard to install sufficient radiators, and spaces with high ceilings e.g. halls where the output of radiators would be lost to the higher parts of the room.
* slower to heat & cool than radiator based systems: need better control systems
+
* Limited heat output due to limitation on maximum comfortable floor temperatures which may be insufficient for small rooms with large heat requirements & large losses e.g. bathrooms (although the warmer floors, in conjunction with extra heating from radiators or kick-space heaters, can make for a more comfortable room than one with a cold floor).
* Slow thermal response causes lower efficiency operation, since heat is given off when not needed
+
* Heat output dependent on floor coverings which need to be chosen to work with the UFH system.
* need radiant-sensing instead of conventional air-temperature-sensing thermostats? no
+
* Slower to heat & cool than radiator based systems, so need better control systems.
* hydronic generally require lower water temp than rad systems - really need extra pump + thermostatic mixing valve to run off mainly rad-based system
+
* Slow thermal response leads to lower overall efficiency for spaces occupied for relatively short periods, due to the heat lost during the longer warm-up and cool-down periods.
* better suited than radiators to lower-temperature flows from condensing and renewable sources, as the lower water temp enables solar collectors and heatpumps to operate more efficienctly
+
* Hydronic (hot-water) systems generally require lower water temperatures than radiator systems leading to extra complexity and expense (extra pump & thermostatic mixing valve) to run in mixed system with radiators.
* expensive & disruptive to retro-fit to existing building: need to remove & relay floors (or poss. ceilings below for upper-floor installations)
+
* The lower water temperatures required by pure UFH systems enable condensing boilers, solar collectors and heat pumps to operate more efficiently than with radiator-based systems.
* electric UFH has high run cost and is prone to failure due to corrosion.
+
* Generally expensive & disruptive to retro-fit to existing building due to need to remove & relay floors (or possibly ceilings below for upper-floor installations).
 +
* Electric UFH is cheaper to install but has higher running costs: popular choice for small bath or shower rooms.
 
More on [[Underfloor Heating]]
 
More on [[Underfloor Heating]]
  
Line 146: Line 136:
 
Walls can also be used for radiant heating. Usually this is acheived by embedding heating pipework into a solid wall surface. A discussion of the possibility of heating via stud walls can be found [http://groups.google.co.uk/group/uk.d-i-y/browse_frm/thread/3fe720e4cfce3a6d/c2183341d4849b0e here].
 
Walls can also be used for radiant heating. Usually this is acheived by embedding heating pipework into a solid wall surface. A discussion of the possibility of heating via stud walls can be found [http://groups.google.co.uk/group/uk.d-i-y/browse_frm/thread/3fe720e4cfce3a6d/c2183341d4849b0e here].
  
Heating ceilings has the obvious disadvantage of unwanted heat loss upwards but one (singularly ineffective) installation is known to [[User:John Stumbles|the author]].
+
Heating ceilings has the obvious disadvantage of unwanted heat loss upwards; even so one (singularly ineffective) installation is known to [[User:John Stumbles|one of the authors]].
  
 
== Filling arrangements: sealed or vented ==
 
== Filling arrangements: sealed or vented ==
Line 152: Line 142:
 
The traditional arrangement for maintaining a body of water in the system comprises a '''feed and expansion''' (aka '''header''') tank above the highest point of the system. The tank is kept topped up by a float valve similar to that in a main cold water storage tank or WC cistern.
 
The traditional arrangement for maintaining a body of water in the system comprises a '''feed and expansion''' (aka '''header''') tank above the highest point of the system. The tank is kept topped up by a float valve similar to that in a main cold water storage tank or WC cistern.
  
Modern systems are usually '''sealed''' with water introduced to the system by a temporary filling hose (or special key-operated device built-in to the boiler). More info can be found in [http://www.makewrite.demon.co.uk/SealedCH.html Ed Sirett's Sealed System FAQ].
+
Modern systems are usually '''sealed''' with water introduced to the system by a temporary filling hose (or special key-operated device built-in to the boiler). More info can be found in [[Sealed system FAQ|Ed Sirett's Sealed System FAQ]].
  
 
For a completely new system a sealed arrangement is generally preferred, unless it is wished to use a directly heated [[Thermal Store]]. Where an old and poorly-constructed existing system is converted to sealed operation there is the possibility of minor leaks from old radiator valves and poorly-made compression joints leading to relatively rapid loss of pressure and the need to top up the system frequently. For this reason if there is no compelling requirement to convert the system it may be better left alone. Conversely if an open vented system suffers from scaling up of the feed pipe, pumping over of the vent pipe into the feed and expansion tank, microbial sludge growth in the F&E tank or air air-locks when filling up it may be worth converting to sealed operation (provided the boiler is a type for which this is permitted).
 
For a completely new system a sealed arrangement is generally preferred, unless it is wished to use a directly heated [[Thermal Store]]. Where an old and poorly-constructed existing system is converted to sealed operation there is the possibility of minor leaks from old radiator valves and poorly-made compression joints leading to relatively rapid loss of pressure and the need to top up the system frequently. For this reason if there is no compelling requirement to convert the system it may be better left alone. Conversely if an open vented system suffers from scaling up of the feed pipe, pumping over of the vent pipe into the feed and expansion tank, microbial sludge growth in the F&E tank or air air-locks when filling up it may be worth converting to sealed operation (provided the boiler is a type for which this is permitted).
Line 255: Line 245:
 
A good pipework arrangement has 'trunk' pipes from the boiler in 22mm (or 28mm depending on the output of the boiler and the manufacturer's instructions) with branches in 15mm (or microbore: 10mm or 8mm) to individual radiators. Pipe sizes can be stepped down from trunks through branches e.g.  
 
A good pipework arrangement has 'trunk' pipes from the boiler in 22mm (or 28mm depending on the output of the boiler and the manufacturer's instructions) with branches in 15mm (or microbore: 10mm or 8mm) to individual radiators. Pipe sizes can be stepped down from trunks through branches e.g.  
  
                            15 --- RAD
+
[[Image:Trunk-branch.gif]]
                          /
 
                    == 22 =- 15 --- RAD
 
                  /        \
 
                |          15 --- RAD
 
                |
 
                |          15 --- RAD
 
                |        /
 
BOILER == 28 ======== 22 =- 15 --- RAD
 
        (flow    |
 
        and      \
 
      return)      == 22 =- 15 --- RAD
 
                          \
 
                            15 --- RAD
 
  
 
==== Microbore ====
 
==== Microbore ====

Revision as of 14:49, 24 November 2019

This article is about Central heating systems using hot water as a heat-carrying medium. (Warm-air systems are sometimes found in the UK but their design and installation is not covered here. There is a discussion on updating existing warm-air systems here)

The article is intended as a guide to:

  • choosing a design for, and installing a new central heating system
  • understanding how an existing system is designed, for the purposes of maintaining and fault-finding

There are separate articles about:

Parts of this article are in skeleton form with main points listed but needing to be expanded

Heat requirements

In order to get a heating system which works effectively and economically it is important to calculate how much heating power will be required, into the building as a whole (in order to calculate the required size for the boiler or other heat source) and into each room (to calculate sizes of radiators or other heat emitters).

Whole house/boiler sizing

For boiler sizing there is a relatively simple yet sufficiently accurate calculation known as the whole-house boiler sizing method. The method is described in the

An online calculator implementing the method is available at:

A spreadsheet implementing the calculator is available at:

The spreadsheet allows easy what-if calculations showing the effect of, say, cavity wall insulation on the house heating requirements.

Heatloss/radiator sizing

For calculating the heat requirements of rooms an elemental approach is taken.

  1. The area of walls, windows, doors, floor and ceilings is calculated
  2. U-values for the materials of these elements are found from tables
  3. Temperature differences across the elements are multiplied by the above figures to calculate total fabric loss
  4. The volume of the room is calculated
  5. The number of air-changes per hour expected for the room is found from a table
  6. The above two figures are multiplied together with a factor for the heat capacity of air to calculate total ventilation loss
  7. The fabric and ventilation losses are added to calculate the total heat requirement of the room, and therefore the size of radiator or other heat-emitter(s) required.

A (Microsoft Windows) computer program implementing this method is the

* Discuss + links to energy conservation articles

Heat Sources

Fuels

The most popular fuels for central heating systems are (in order of increasing expense):

  1. Natural Gas
  2. Oil
  3. LPG (Liquefied Petroleum Gas). Propane and Butane are LPGs but for heating propane is mostly used. It is often known generically as "Calor" gas (in the same way that vacuum cleaners are known as "Hoovers").
  4. Electricity can be used for central heating systems but where it is used for heating it is generally found used with storage heaters using off-peak rate electricity. Where no other fuel is available a system using a heat bank heated by off-peak electricity with Underfloor Heating or radiators is likely to be more economical to run than one using storage heaters or any sort of peak-rate heaters. An example of such a system is the "Electramate" made by Gledhill. This is a ready-made package, but similar systems can be designed using other manufacturers' components.
  • solid fuels - coal, anthracite etc, and wood or woodchips - are sometimes used to contribute to space and/or water heating. Nowadays they are not usually used as main fuels since most domestic appliances for using them cannot be automatically fed and regulated.

Renewable sources such as:

  • solar thermal
  • geothermal

are also increasingly found contributing to heating systems rather than providing sole energy supply.

Appliances

Boilers

The most common appliances for supplying heat are boilers using natural gas, oil or LPG to heat "primary" water. Primary water is water intended for heating rooms via radiators etc or heating "secondary" water for washing etc (see DHW). Some boilers - known as combi boilers - heat DHW directly.

For further discussion of types of boiler, combi/conventional choice etc see:

Electric boilers perform the same function as non-combi boilers using electricity. They can be expected to have very high running costs compared to natural gas, oil or LPG boilers.

Ranges

Ranges e.g. Agas and Rayburns usually heat DHW as a by-product of their cooking functions. They may use natural gas, oil, LPG or solid fuels.

Combined range/boilers appear outwardly almost identical to ranges but contain a separate central heating boiler sharing the flue of the cooking range. They may use natural gas, oil or LPG. They are generally non-condensing appliances and therefore less efficient than current central heating boilers (one exception being the Rayburn 480 CD which has a condensing boiler section: this gas-only appliance is only available with a balanced flue).

CHP

Combined Heat and Power (CHP) generators (e.g. Microgen, Whispergen) generate electrical power whilst heating primary water.

They generate electricity with much lower efficiency than fossil fuel generated electricity supplied by conventional central power stations, but they only generate when heat is wanted, which means all the heat and electricity output is used. This makes the overall picture more efficient than a central power station, where over half the input energy is wasted as heat. So overall the method works out more energy efficient.

CHP requires non-trivial arrangements for connection into the domestic electricity supply, and financial and administrative arrangements to sell surplus electricity back to the supplier.

CHP is a well established technology for large facilities, but domestic CHP generators are not readily available in the UK at present (Feb 2007), partly due to concerns about some aspects of the systems and lack of a solid proven track record of domestic CHP or the products on offer.

Solid-fuel back-boilers

Traditional coal fires or more modern wood-burning stoves with back boilers can contribute to domestic space or water heating. Their heating output is sometimes combined with that of a main heating boiler by means of a Dunsley Neutraliser, although thermal stores can also be used.

Renewable sources

Solar thermal panels are usually used to provide Domestic Hot Water (If considering this technology one might also investigate solar warm air systems which may give better energy returns for a given cost: see Solar Thermal.)

Ground-source heat pumps provide energy at lower temperatures than are required for DHW and are generally used in space heating systems, often with under-floor heating which can make better use of the lower temperatures generated.

Both systems, as well as waste water heat recovery, can be used with thermal stores, combining their output with other systems including conventional boilers and/or electric backup heaters to provide space heating, via UFH and radiators, and DHW.

Air-source Heat Pumps - similar benefits as ground-source heat pumps and easier to install; however in locating these units, the potential noise of the fan must be taken into account as some people are very sensitive to such noise, especially at night.

Heat Emitters

Emitters are means of heating spaces: radiators, under-floor heating etc.

Radiators

"Radiators" actually emit heat mostly via convection rather than radiation: they heat the air which heats the fabric of the room and its occupants.

They come in a number of types -- standard panel radiators, Low Surface Temperature (LST), "designer" radiators and towel warmers -- and shapes, sizes and colours/finishes. Radiators must be chosen and located so as to provide sufficient output to heat the spaces they are installed into.

There is more detail in the article:

Fan-assisted heaters

These types use forced convection, compared to natural convection employed by radiators.

Sometimes known as kickspace heaters, these have a fan to distribute air warmed by a water-to-air heat exchanger (typically tubes with fins attached) which transfer heat from the central heating primary water.

  • particularly suitable for small rooms with limited wall space for rads (e.g. kitchen) or too-high heat-loss/floor-area ratio for UFH (e.g. bathroom)
  • fast warm-up
  • less localised heating effect than radiators; can be effective at heating larger areas
  • may feel uncomfortably cold when shut off by thermostat (like electric fan heaters)
  • may be too noisy for domestic use in lounges and bedrooms

Underfloor

This gives radiant heat which warms occupants and fabric directly rather than warming the air.

  • Requires less total heat output (figures of around 20% are quoted) for a given comfort level compared to radiator-based systems.
  • Tends to give warmer feet and cooler heads giving a more comfortable, less stuffy feeling.
  • Good for heating large spaces where it would be hard to install sufficient radiators, and spaces with high ceilings e.g. halls where the output of radiators would be lost to the higher parts of the room.
  • Limited heat output due to limitation on maximum comfortable floor temperatures which may be insufficient for small rooms with large heat requirements & large losses e.g. bathrooms (although the warmer floors, in conjunction with extra heating from radiators or kick-space heaters, can make for a more comfortable room than one with a cold floor).
  • Heat output dependent on floor coverings which need to be chosen to work with the UFH system.
  • Slower to heat & cool than radiator based systems, so need better control systems.
  • Slow thermal response leads to lower overall efficiency for spaces occupied for relatively short periods, due to the heat lost during the longer warm-up and cool-down periods.
  • Hydronic (hot-water) systems generally require lower water temperatures than radiator systems leading to extra complexity and expense (extra pump & thermostatic mixing valve) to run in mixed system with radiators.
  • The lower water temperatures required by pure UFH systems enable condensing boilers, solar collectors and heat pumps to operate more efficiently than with radiator-based systems.
  • Generally expensive & disruptive to retro-fit to existing building due to need to remove & relay floors (or possibly ceilings below for upper-floor installations).
  • Electric UFH is cheaper to install but has higher running costs: popular choice for small bath or shower rooms.

More on Underfloor Heating

Other radiant

Walls can also be used for radiant heating. Usually this is acheived by embedding heating pipework into a solid wall surface. A discussion of the possibility of heating via stud walls can be found here.

Heating ceilings has the obvious disadvantage of unwanted heat loss upwards; even so one (singularly ineffective) installation is known to one of the authors.

Filling arrangements: sealed or vented

The traditional arrangement for maintaining a body of water in the system comprises a feed and expansion (aka header) tank above the highest point of the system. The tank is kept topped up by a float valve similar to that in a main cold water storage tank or WC cistern.

Modern systems are usually sealed with water introduced to the system by a temporary filling hose (or special key-operated device built-in to the boiler). More info can be found in Ed Sirett's Sealed System FAQ.

For a completely new system a sealed arrangement is generally preferred, unless it is wished to use a directly heated Thermal Store. Where an old and poorly-constructed existing system is converted to sealed operation there is the possibility of minor leaks from old radiator valves and poorly-made compression joints leading to relatively rapid loss of pressure and the need to top up the system frequently. For this reason if there is no compelling requirement to convert the system it may be better left alone. Conversely if an open vented system suffers from scaling up of the feed pipe, pumping over of the vent pipe into the feed and expansion tank, microbial sludge growth in the F&E tank or air air-locks when filling up it may be worth converting to sealed operation (provided the boiler is a type for which this is permitted).

Configuration: Controls and Zoning

An important aspect of the way a heating system is designed is the way heating is divided into physical zones, and the controls used to regulate heating. These are discussed in a separate article:

Pipework

Pipework materials

Copper

Traditional material.

Available in various grades and sizes. Those found in domestic CH installations are:

  • Rigid ("Table X") in small-bore sizes: 28mm, 22mm, 15mm
  • Fully-annealed (soft) ("Table Y") in micro-bore sizes: 10mm, 8mm

Features:

  • Material usually more expensive than plastics
  • Available in lengths 1m, 2m, 3m (also 6m?). 2m and 3m are most common.
  • More time-consuming to install
  • Requires more lifting of flooring when retro-fitting to existing building
  • Small-bore pipes must usually be run in notches in the top of joists: susceptible to damage by nailing and contrary to building regulations.
  • Micro-bore pipes may be threaded through holes in joists out of reach of nailing
  • Micro-bore pipe may be "cabled" through floor and wall spaces with less disruption in existing building
  • May be noisy (e.g. clicking noises) as pipes expand & contract when heating & cooling
  • Surface runs can be done neatly avoiding need for boxing-in in certain locations
  • Can be joined with solder, compression or push-fit fittings
  • Micro-bore may be bent by hand (with external spring) or by small machine for neater bends
  • Small-bore may be bent by hand with spring for 15mm (and possibly 22mm if pipe annealed or fitter very strong)
  • Small-bore may be bent with large hand-held machine for 15 & 22mm, larger machine on stand for 28mm

Plastic

Some older installations using small-bore (15-28mm) pipework in PVC and ABS may be found but these materials are no longer used for CH pipework.

Moderm materials (used for last 2 decades or so in UK) are

  • PB (Polybutylene)
  • PEX (Polyethylene cross-linked)

Sizes available are:

  • 28mm
  • 22mm
  • 15mm
  • 10mm

Features:

  • Pipework usually cheaper than copper
  • Pipe available in long rolls e.g. 25m, 50m and 100m
  • Easier & quicker to install than rigid pipe
  • Pipe may be "cabled" with minimum lifting of flooring in existing building
  • Pipes may be run through holes in joists out of reach of nailing
  • Pipes expand and sag when hot requiring boxing-in if run on surface
  • Can be joined with compression and push-fit fittings.
  • Long runs possible with bends in pipework and fewer fittings
Barrier and non-barrier

Conventional Wisdom is that only barrier pipe should be used for CH systems as the metallic barrier layer prevents oxygen diffusing through the plastic walls of the pipe into the primary water and causing corrosion in ferrous and possibly other metallic parts of the system - boilers, radiators etc. However Hepworth Plumbing Products have stated in the uk-d-i-y newsgroup that:

If Hep2O Standard pipe has been installed in accordance with our instructions in a central heating system and one of the recommended inhibitors used there is no technical reason why it should not continue to give good service for many decades. [[1]]

and

It is now considered by British Gas that central heating systems that include plastics pipe manufactured to the appropriate British Standard (such as Hep2O) do not represent a potential corrosion problem from oxygen ingress where the system water includes an adequate strength of inhibitor. This applies equally to Barrier and Non-Barrier pipes. [[2]]

However in real life not all central heating systems have effective corrosion inhibition at all times, so barrier pipe is still the preferred option.

Tails

Even in a system using plastic pipe for the main pipe runs the boiler manufacturer usually requires the first 600mm or 1m of pipework connected to the boiler to be in copper.

Also many installers and/or clients prefer copper tails to radiators rather than plastic. For "designer" radiators or towel radiators in bathrooms chromed radiator tails are often preferred. Since chrome is very hard it is necessary to remove the chrome from the part of the tail pipe being connected into a push-fit fitting since the grab ring of the fitting may not bite securely into the chrome and the fitting may become detatched. It is also necessary to remove the chrome when connecting into a solder fitting since solder may not adhere properly to chrome. If using a compression fitting a brass olive is preferable to a copper one since the olive has to slightly compress the pipework to secure the fitting and the chrome may be too hard for a soft copper olive to acheive the necessary pressure.

pipework layout

pipe sizes v. heat-carrying capacities + noise

Single pipe loop

Obsolete - not used for current designs but found in some old installations.

Single pipe means that radiators are plumbed in series. The problem is that as water passes through each radiator, it loses heat, so radiators at the far end of the chain have to be oversized, and run at reduced temps.

Where necessary to extend (add extra rads) can either add new rad into existing loop (allowing extra size for rad if at cool end of loop) or, especially if several new rads to be added, divide system and add a seperate 2-pipe loop - perhaps as a seperate zone if it makes sense.

Single pipe systems may underperform, as heating expectations are higher now than they were when these old systems were installed. Replumbing the radiators in parallel is a logical option, but there is a simpler and cheaper way to improve total heat output to some extent, and that is to increase pumping rate. The faster the pumping, the less temp loss occurs along the chain. A more powerful or 2nd pump can thus be a low cost way to increase system output.

Tree: trunk + branch

A good pipework arrangement has 'trunk' pipes from the boiler in 22mm (or 28mm depending on the output of the boiler and the manufacturer's instructions) with branches in 15mm (or microbore: 10mm or 8mm) to individual radiators. Pipe sizes can be stepped down from trunks through branches e.g.

Trunk-branch.gif

Microbore

The topology of a microbore installation is usually a tree with trunks of 22mm and branches of 10mm and/or 8mm pipework, and is inherently well-balanced.

The fully-annealed ("Table Y") copper pipe (or flexible plastic pipe) used for the microbore sections can be bent and threaded through stud walls and joists unlike rigid copper in small-bore sizes.

Some clients may prefer to have 15mm tails to radiators (joined to microbore under the floor or in the wall) for the sake of appearance.

There is an article on retro-fitting 15mm radiator valves to microbore.

Limited power throughput (2.5kW-ish)

Narrow bore is more vulnerable to sludge.

Dual loop

inherently balanced but rarely practicable

Random

An arrangement with radiators connected with widely varying lengths of narrow-bore pipework is bad for balancing but sometimes necessary especially when extending an existing system where access under floors etc is limited.

Installation

Routing

The choice of routes for the pipework may have to incorporate a number of criteria. These may be aesthetic, cost or performance based. For instance, the performance considerations will urge you avoid routing through unheated spaces or a zone differing from the one to be heated. The cold space below a suspended ground floor is not a natural performance choice and requires effective insulation but is an overwhelmingly good choice from the cost and aesthetic aspects.

Typically there are general approaches depending on the structure of the floors.

  • All floor(s) suspended: Main pipes run vertically between floor(s) in one place (often a corner near the boiler). Plastic pipe is a great choice as it can be cabled through joists and readily installed in runs between joists; it is also out of sight, has fewer joints and lower heat losses. Copper/chrome tails emerge through floor to supply radiator from below.
  • Ground floor is solid other floor(s) are suspended: The upper floors or even the loft space (for a bungalow) are used as above and also to supply the radiators in rooms below. Groups of one to three radiators (or perhaps more) are supplied from above by a pair of pipes. Each group will need a drain off point. Pipes drops are on show but can be hidden in a duct but this can make a feature out of a necessity, there will still be runs under the radiator.
  • All solid floors and ceiling: Copper pipes are run round at skirting board height from room to room, going through internal walls as needed. This usually leads to a inferior layout topology so needing extra care to balance the system. The entrance door is often an obstacle; it can be unsightly to go over and across and down, and that leads to the needs for air bleed points, ideally at the top of each down flowing pipe, this is a further draw back. It is often best to bite the bullet and dig the concrete up to cross under the doorway and accept that such sites have difficulties.
  • New build: Apart from the possibility of underfloor heating there is also the oportunity to install microbore plastic behind dry lining boards.
  • installation in solid floor

Joist Notching

Building regs impose restriction on the places and sizes for notches and holes in joists. Notches must be no more than 12.5% of joist depth installed between 10% and 25% along the spans length. The best way to cross joists is through holes bored in the middle of joists. Microbore can be cabled through, about 4 or 5 joists seems to be the maximum number that can be crossed by any single length. Flexible plastic pipe is a very welcome material in these cases, even then a good right angled joist boring drill or cordless equivalent is a must for this part of the job. Rigid pipework has to be installed in notches, which should be placed in the middle of the floor board.

Drain-off points

It is certainly good practice, if not manadatory, to install drain off points on the lowest points of the pipework. Ideally the best place is outside over a gully. Some radiator valves include a built in drain tap. There are two types of fittings on is known as heavy and light pattern. The heavy type have a seal around the spindle they are a little less messy when in use. There is no reason why you could not use ball-o-fix service isolators although this does not seem to be common practice.

  • plastic v. copper or chromed pipetails
    • play in tails
  • pressure testing
  • flushing