Formula examples

Examples of how to use mathematical expressions, and formula in this wiki.

Chemical Equations

<ce>C6H5-CHO</ce>
${\displaystyle {\ce {C6H5-CHO}}}$

<ce>\mathit{A} ->[\ce{+H2O}] \mathit{B}</ce>
${\displaystyle {\ce {{\mathit {A}}->[{\ce {+H2O}}]{\mathit {B}}}}}$

<ce>{SO4^{2-}} + Ba^2+ -> BaSO4 v</ce>
${\displaystyle {\ce {{SO4^{2-}}+Ba^{2}+->BaSO4v}}}$

<math chem>A \ce{->[\ce{+H2O}]} B[/itex]
${\displaystyle A{\ce {->[{\ce {+H2O}}]}}B}$

<ce>H2O</ce>
${\displaystyle {\ce {H2O}}}$

<ce>Sb2O3</ce>
${\displaystyle {\ce {Sb2O3}}}$

<ce>H+</ce>
${\displaystyle {\ce {H+}}}$

<ce>CrO4^2-</ce>
${\displaystyle {\ce {CrO4^2-}}}$

<ce>AgCl2-</ce>
${\displaystyle {\ce {AgCl2-}}}$

<ce>[AgCl2]-</ce>
${\displaystyle {\ce {[AgCl2]-}}}$

<ce>Y^{99}+</ce>
${\displaystyle {\ce {Y^{99}+}}}$

<ce>Y^{99+}</ce>
${\displaystyle {\ce {Y^{99+}}}}$

<ce>H2_{(aq)}</ce>
${\displaystyle {\ce {H2_{(aq)}}}}$

<ce>NO3-</ce>
${\displaystyle {\ce {NO3-}}}$

<ce>(NH4)2S</ce>
${\displaystyle {\ce {(NH4)2S}}}$


${\displaystyle ax^{2}+bx+c=0}$

$ax^2 + bx + c = 0$


${\displaystyle ax^{2}+bx+c=0\,}$

$ax^2 + bx + c = 0\,$


${\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}}$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$


Tall Parentheses and Fractions

${\displaystyle 2=\left({\frac {\left(3-x\right)\times 2}{3-x}}\right)}$

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$


${\displaystyle S_{\text{new}}=S_{\text{old}}-{\frac {\left(5-T\right)^{2}}{2}}}$

 $S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$



Integrals

${\displaystyle \int _{a}^{x}\!\!\!\int _{a}^{s}f(y)\,dy\,ds=\int _{a}^{x}f(y)(x-y)\,dy}$

$\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$


Summation

${\displaystyle \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}}$

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}$


Differential Equation

${\displaystyle u''+p(x)u'+q(x)u=f(x),\quad x>a}$

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$


Complex numbers

${\displaystyle |{\bar {z}}|=|z|,|({\bar {z}})^{n}|=|z|^{n},\arg(z^{n})=n\arg(z)}$

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$


Limits

${\displaystyle \lim _{z\rightarrow z_{0}}f(z)=f(z_{0})}$

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$


Integral Equation

${\displaystyle \phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dR}$

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$


Example

${\displaystyle \phi _{n}(\kappa )=0.033C_{n}^{2}\kappa ^{-11/3},\quad {\frac {1}{L_{0}}}\ll \kappa \ll {\frac {1}{l_{0}}}}$

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$


Continuation and cases

${\displaystyle f(x)={\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\1-x^{2}&{\mbox{otherwise}}\end{cases}}}$

$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}$


Prefixed subscript

${\displaystyle {}_{p}F_{q}(a_{1},\dots ,a_{p};c_{1},\dots ,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdots (a_{p})_{n}}{(c_{1})_{n}\cdots (c_{q})_{n}}}{\frac {z^{n}}{n!}}}$

${}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}$


Fraction and small fraction

${\displaystyle {\frac {a}{b}}}$   ${\displaystyle {\tfrac {a}{b}}}$
$\frac {a}{b}\ \tfrac {a}{b}$


Alternate layout for expressions using math Template

This layout renders simpler expressions using HTML rather than the full blown rendering of the [itex] tag. E.g:

xn + yn = 1
{{math|1=''x''<sup>''n''</sup> + ''y''<sup>''n''</sup> {{=}} 1}}