From DIYWiki
Revision as of 18:36, 2 March 2017 by NT (talk | contribs) (→‎Full featured: BR & C)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This article covers the choice and fitting of wired doorbells.

The options

  • Wired doorbell
  • Wireless doorbell
  • Mechanical doorbell
  • Door knocker
  • Nothing

This article looks almost entirely at wired doorbell systems.


Doorbell kits are easy, as you don't need to worry about voltage, ac or dc, regulation or anything else. You even get all the bits in one pack. If you're not fussy, pre-packed kits make life simple. Kit systems tend to be basic, and a lot of the sections about extra options in this article won't apply.

Usually the only thing you need to know with a kit is how to wire it up, and thats included in the kit. See the basic circuit here.

Self assembled systems

Assembling your own system from diverse parts is a bit more complex, but not difficult. And of course its much more flexible, with more choices and various extras available.



You get a choice of

  • Bell
  • Chime (mechanical)
  • Electronic sounder
  • Buzzer (mechanical or electronic)

As a general rule of thumb:

  • Bells are the loudest
  • Chimes are medium volume, but much more pleasant to the ear
  • Electronic sounders can produce various sounds, but aren't usually so loud.

Mechanical sounders can produce voltage pulses on the cable. Mixing electronic and mechanical sounders on one circuit is not best practice, and may kill the electronic sounder.

More sounder options

Fire bells and very high output electronic sounders (eg) can be used outdoors to cover a large area, or indoors for the hard of hearing. These need to run off a bigger power supply than the usual door bell.

Ding-dong chimes can be confused with similar sounds on TV, especially if a person's hearing isn't good. A simple solution is to swap the sounder's 2 bars, changing the sound to dong-ding.

Piezo electronic sounders produce high frequencies, and are less easy for people with poor hearing to hear. Sounders with a wide range of frequency output are more likely to be heard.

Use of more than one sounder enables each to be best positioned for audibility in different house areas. This is another good option for the hard of hearing.

Sounders can be replaced with coloured lights for the deaf. Use a relay for the lights.

When more than one bell circuit is used, a different sound for each one differentiates which bellpush is being pressed. Historic large bell systems used indicator panels, but with different sounds available and multiple sounders affordable this is no longer a necessity.

For very large systems its possible to use electronic sounders that produce different sounds depending on which input is activated.

Sounders using more power than the usual bell transfomer supplies can be run 2 ways:

  • The entire system is rated to suit the sounder. In some cases this means a mains rated system.
  • A relay is used. The low voltage circuit powers the relay coil, the relay switches a separate power supply to power the sounder.

Adding another sounder

Its possible to mix mechanical and electronic sounders, but this can create issues that can result in the electronic one dying or not behaving well. Adding mechanical to existing mechanical or electronic to existing electronic is simpler.

Synchronising bells

Bells and dingdongs can be synchronised by running the two in series rather than parallel. This sounds rather better, but raises minor electrical issues.

The mechanical interrupt switch on one of the sounders is wired over (shorted), so that the action of both sounders is dictated by the same interrupting switch. The supply voltage needs to be increased (usually doubled) to run the 2 in series.

In most cases this will work off the bat, but if the mechanical speed of the 2 sounders is significantly different it can sometimes fail to work, due to the slower one failing to hit the bell as it tries to move at the speed of the faster bell. If this should happen, wire across the switch mechanism on the faster bell instead and let the switching mechanism of the slower one dictate the switching speed.

AC only bells with no switching also exist. These use a hammer vibrating at mains frequency. If used in series, these high speed bells and a low speed interrupting bell should not be mixed, they will perform badly together.


Bellpush 4570-2.jpg

The bell push is just a momentary switch. It doesn't matter whether the switch goes in the -ve or +ve feed to the bell.

Since it switches low voltage at not much current, the switch can be pretty much any type of momentary push-to-make switch. Custom switches are perfectly DIYable where a character bellpush is wanted.

Bell push switches are routinely low quality. Various better quality commercial momentary press switches are available in the larger electrical accessory ranges, eg MK, including:

  • standard plateswitch style
  • architrave switch
  • weatherproof/external mains
  • momentary pull-cord switches

Rubber tubes connected to a pneumatic switch are used on some petrol station forecourts, to ring when a vehicle drives over it. These can be useful on the main property entrance(s) for larger properties, though they're not vandal proof.

Door switches are available for shop doors.

Muting switches

On circuits with multiple bellpushes or sounders, on/off switches can be inserted into the system to optionally mute one or more buttons or bells. In the full featured circuit digram further down (here):

  • Sw1 silences one bell on one circuit
  • Sw2 silences both bells on one circuit
  • Sw3 silences one button on one circuit

Vandal proofing

Heavy steel cased switches prevent physical breakage.

Connecting a large capacitor (4700uF) in series with the bellpush (and a leakage resistor across the capacitor) prevents the bell being stuck on. When the switch is pressed the bell will then only ding once; if the switch is wedged in the pressed position it sits silent after the first ding. This is unsuitable for noisy environments or hearing impairment, where more than a single ding is required.

Custom switches

Making your own switch housing is an easy way to replace a piece of plastic with a quality feature. Numerous designs, materials and construction methods are possible. Wood is an easy and minimal cost material to use, which can be worked to a wide range of styles. It may be sawn & planed or sanded, carved with basic Hand Tools, or turned with a lathe, or a even a drill & screw & grinder


Overuse of the bellpush often occurs if the caller can't hear the sounder, and this can be quite annoying. Ensure the caller can hear a sounder, whether its the main one or if necessary an additional one.


Filament lamp

Many bellpushes have a low power filament bulb inside, which lights when the switch isn't being pressed. This connects across the switch contacts. Such lamps are generally intended for use with mechanical sounders, if used with electronic ones they can pass enough current to cause continuous sounding.

Filament lamps are short lived, and for a bellpush they are run well below rated voltage to achieve long life. This inevitably gives them a yellowy white colour. If desired this can be countered by using pastel tinted paper for the printed name instead of white card (but not all colour papers are light fast).


Row LEDs2-2.jpg

LEDs aren't used in most bell systems, but Ultrabright LEDs are a good long life replacement for bellpush filament lamps.

  • LEDs are available in several colours as well as white
  • LEDs last in the region of 50,000 hours if run well below max rated current
  • they cost 10s of pence
  • they consume miniscule power.
  • mechanically robust, unlike filament lamps
  • To illuminate a small paper sign or a backlit plastic ring, choose an ultrabright LED. Superbrights arent bright enough.
  • When the LED is viewed directly rather than used to light something, either choose high brightness or use ultrabrights with a higher resistor value
  • Indicator LEDs are no use, not bright enough
  • Don't treat these industry standard LED terms too literally!

LED circuits

LEDs are slightly less simple to use than filament lamps. They require a resistor to limit current, and on ac circuits a diode or 2nd LED.

A dc supply is simplest to use with LEDs, with a series resistor to limit current. The LED must be connected the right way round. When using LEDs with a mechanical sounder, a reverse connected ultrafast diode across the switch contacts is also required to avoid LED failure. LEDs with at least 1,000 mcd output are recommended.

Circuit diagram led for bell push.png

Diagram: 1 or 2 LEDs on an AC supply. Either 2 LEDs or a LED and a diode are used

For maximum brightness, the following resistor values give around 20mA:

  • for an 8v dc supply:
    • blue & white LEDs: 220 ohms
    • green: 270 ohms
    • red, orange, yellow: 330 ohms
  • for an 8v ac supply:
    • blue & white: 330 ohms
    • green: 470 ohms
    • red, orange, yellow: 470 ohms
  • for a 6v dc supply:
    • blue & white: 100 ohms
    • green: 150 ohms
    • red, orange, yellow: 220 ohms
  • for a 6v ac supply:
    • blue & white: 150 ohms
    • green: 220 ohms
    • red, orange, yellow: 330 ohms

LEDs are generally best run at reduced current to achieve long life. Using near double the resistor values above achieves this.

At 20mA a LED will consume 40-80mW, or 0.35-0.7kWh per annum, at a cost of 3.5-10p per annum. At 10mA a LED costs 2-5p per annum to run.

Pink LEDs deteriorate rapidly, and aren't recommended. Pink can be obtained by mixing red & blue or red & white LEDs.

There are many more LED circuit options, including simple circuits with colour control. See LED Lighting#Ballasts


A snubber is not usually fitted, but if you put time into making a fancy switch it makes sense to take another minute or 2 to make it more reliable & long lived.

Improvement in switch reliability and longevity is gained by fitting a snubber across the switch contacts. This also eliminates one of the causes of interference to audio equipment & digital TV.

Snubbers make more difference with mechanical sounders, which are invariably inductive loads, and hard on switch contacts.

Mains voltage snubbers aren't effective for low voltage use. More suitable component values would be:

  • for dc systems: a 15-22 ohm resistors plus a 10uF capacitor.
  • for ac systems: 15-22 ohms & a 1uF non-polar capacitor.

A filament bulb in the bellpush acts as a snubber, but these are often not fitted, and when they are they're often not replaced when they fail. Snubbers last for life. LED lights in bellpushes don't snub.

Circuit diagrams


     |  |
|             |                         ______
| Transformer |------------------------|      |
|             |                        | Bell |
|             |---------Switch---------|______|

Basic system diagram

Most Common

     |  |
|             |                              ______
|             |-----------------------------|      |
| Transformer |                             | bell |
|             |------+--bellpush--+---------|______|
|_____________|      |            |
Common system diagram

Full featured

The basic circuit can be optionally expanded with various features:

     |  |      ___                                                     Live
 ____|__|___  |   |            Bell   Bell   Lamp   Bell    Bell         |
|           |-|~ +|--+----------+-------+------+------+-------+------+   |
|           | |   |  |        __|__   __|__    |    __|__   __|__   _|___|_
|           | |   |  | +     |     | |     |   |   |     | |     | |       |
|           | |   | === C    |     | |     |  (_)  |     | |     | | Relay |
|           | |   |  |       |_____| |_____|   |   |_____| |_____| |_______|
|           | |   |  |          |       |      |      |       |      |   |
|___________|-|~ -|--+A        Sw1      |     C+------+-------+------+   |
              |___|  |          |       |             |                __|___
 Transformer         |          +-------+B            |               |      |
               BR    |          |                     |               | 240v |
                     |         Sw2                    |               | bell |
                     |  Light   |             Light   |               |______|
                     | /      \ |            /      \ |                  |
                     +--Switch--+          +--Switch--+                  |
                     |          |          |          |               Neutral
                     +--Snubber-+          +--Snubber-+
                     |          |          |          | 
                     |         Sw3         |          | 
                     |  Light   |          |  Light   | 
With                 | /      \ |          | /      \ | 
optional             +--Switch--+          +--Switch--+
extras               |                     |            

switch: bellpushes
Sw: silencing switches
Mechanical indicators may be fed from points A,B,C
BR & C = bridge rectifier & capacitor

Power supplies

Bell transformer 3528-2.jpg


A 6v zinc carbon lantern battery can last a decade, but one costs as much as a wallwart, so batteries are not the most popular option.

Batteries are only workable with unlit bellpushes. Use of an electronic sounder makes a battery last much longer.

The modern fashion is to cut manufacturing costs by using AA or PP3 batteries. These work, but have much shorter lives, and you end up with repeated battery replacement and lots of missed calls. Over the long term, small batteries are a false economy.

Kit Power supplies

The power supply in a kit will match the sounder.

Other power supplies

If assembling your own system you'll need to do a bit of thinking re the power supply.

Standard bell transformers can be used with a lot of sounders, but not all. These are ac output transformers, typically 5-8v. Mechanical sounders usually use these. They're the simple choice if your sounder will accept the ac voltage the transformer produces. If it won't, the ac may kill the sounder. The next section explains supplies for sounders requiring dc, and how to run any sounder on a wallwart. Most ac sounders also run happily on dc, typically requiring a bit less voltage on dc.

For dc wallwart supplies:

  • for electronic sounders, use a wallwart of the sounder's rated voltage
  • for mechanical sounders, use a 1A wallwart of 3v above the sounder's rated voltage. Adding a 2200uF-4700uF 16v (or more) capacitor across the transformer's outputs (connecting + to +, - to -) can improve reliability & volume.

The above rule of thumb will work fine in nearly all cases.

DC power supplies explained

If you want to understand power supply choice properly, and pick the optimum supply, here's the deal:

Electronic sounders use low power, and will run fine off the rated voltage of dc supply. No extra capacitor is required. A switched mode wallwart should ideally be the same voltage out as the sounder is rated for, an iron core wart can be the same voltage or a bit less.

Mechanical bells and ding-dong chimes use a lot of current when they're sounding, well above the rated current of your average wallwart. This isn't a problem for the wart, since it only delivers this current for a tiny percentage of the time. However it does have implications for the sounder. The current draw results in the wart delivering well below rated voltage during sounding, due to transformer copper losses. This drop is partly made up for by picking a higher voltage wart.

An added issue is that mechanical sounders suffer from stiction, and occasionally require an initial current & voltage kick to get them moving freely, so they work properly & give good volume. The capacitor delivers this, by charging to above on-load voltage and delivering this to the bell for a very brief moment when the bellpush is operated. This is entirely harmless to mechanical sounders. This is usually not needed and usually not fitted, but does extend the life and reliability of mechanical sounders.

Most iron cored wallwarts deliver well above rated voltage when off load. This doesn't matter to mechanical sounders since they're not connected, and a momentary overvoltage when connected is beneficial rather than harmful. Light bulbs however do care very much about voltage, and the bellpush bulb should be rated at above the voltage the wart delivers when offload. A multimeter will show the off load voltage, it can somtimes be as much as 50% above rated voltage. Hence the bulb and bell should have different voltage ratings, yet both be powered by the one supply.

Switched mode wallwart supplies are a little different. First they won't deliver above rated current, unlike transformer types. With electronic sounders this isn't an issue. With mechanical sounders, often all is well, but sometimes you might run into trouble with a small switched mode supply. If pressing the bellpush gives no sounding, the mechanics show no movement, and the voltage drops to near nothing at that time, you need a higher current supply. A higher voltage switched mode wart with the same current rating won't help.

CU mounting

Bell transformers that mount inside a CU (consumer unit, aka fusebox) are available. They cost more to buy & more to fit, and introduce low voltage wiring into a mains enclosure.


Ways to indicate which bellpush was pressed:

  1. use 2 separate bell circuits with different sounds
  2. add a series capacitor to one bellpush so one of them only gives a single ding
  3. more complex options are also available involving electronics that store and indicate which switch was last activated.
  4. Victorian mechanical indicator boards can be used, or new ones made. These electromagnetic mechanical indicators use 2 switch circuits feeding one bell circuit. A simple electrical version can be made with a bistable relay and 2 lamps or an electromagnetic pointer.


Bell wire 4354-3.jpg

Bell wire is the usual cable used. In large properties, long runs of bell wire can create voltage drop and affect operation with mechanical sounders, the solution to this is simply to increase the power supply output voltage to compensate.

Standard 4mm bell wire staples are used to fix the cable to the wall. Since its a low voltage system, there's no requirement for insulated fixings, and any type of staples may be used.

Polarity doesn't matter for ac systems, with dc sounders it usually does. Bell wire has a tiny ridge moulded along one edge, and this is used to maintain correct polarity throughout the wiring.

Enamelled wire is less than a millimeter across, and can be placed in cracks and gaps, or stuck onto a surface away from eye height, and generally goes unnoticed once painted over. Its also possible to make a tiny channel in plaster to run it in by using a knife, and bury it in plaster or filler. It can be used with electronic sounders only, but is not recommended with mechanical types (bells, chimes, some buzzers). Although door bells and other mechanical sounders are low voltage devices, their internal switching produces much higher voltage pulses on the cable, making the use of barely insulated wire unwise. For the same reason, mixing electronic and mechanical sounders on one circuit is not recommended, and can sometimes kill the electronic sounder.

Extending systems

If you want to add another bell or bellpush, often its as simple as wiring it in. But sometimes the placement of existing wiring affects the options.

When a second bell is wanted, and access is only available to the 2 ends of the system (ie the bell / bellpush end and the transformer end) because the wiring is buried, there are a few options:

1. Add a sounder in series with the supply at the transformer end. You'll usually need to move the voltage tap on the transformer to maximum. Replace the bellpush bulb with a higher voltage one.

2. Add a current relay in series with the supply at the transformer end. This will switch when the existing bell is activated, and the switch contacts can be used to drive a 2nd bell off the supply.

3. Run enamelled copper wire on the surface. Keep it away from eye level and its not noticeable.

4. Instead of adding a 2nd sounder, replace the existing one with a high volume type.

Wireless extensions

Wireless extensions can be added to otherwise wired systems using modules such as these.

Wireless bells

Sure enough these need no wiring. Since they run on batteries they tend to go flat. If you haven't had any visitors in a while that might be why!

If you live alone, keeping the receiver in your pocket ensures you don't miss calls. Some wireless sets are specifically designed for this.


Fault finding

Bell circuits are usually very simple, and should present no difficulty if you have a multimeter to see what's going on where. There are occasionally unexpected complications, eg

  • water in the bellpush can sometimes pass enough current to operate an electronic sounder
  • mechanical sounders in series can sound with odd or inconsistent timing
  • switched mode supplies can sometimes fail to deliver enough current to operate mechanical sounders properly or at all (iron transformers can deliver well above their continuous rated current in bell use)

Toxicity & Disposal

Old chimes tend to contain a mercury tilt switch, filled with a fair amount of mercury. Never chuck these on a fire!

See Also